Channel Optimized Vector Quantization: Iterative Design Algorithms

نویسندگان

  • Hamidreza Ebrahimzadeh Saffar
  • Fady Alajaji
چکیده

Joint source-channel coding (JSCC) has emerged to be a major field of research recently. Channel optimized vector quantization (COVQ) is a simple feasible JSCC scheme introduced for communication over practical channels. In this work, we propose an iterative design algorithm, referred to as the iterative maximum a posteriori (MAP) decoded (IMD) algorithm, to improve COVQ systems. Based on this algorithm, we design a COVQ based on symbol MAP harddecision demodulation that exploits the non-uniformity of the quantization indices probability distribution. The IMD design algorithm consists of a loop which starts by designing a COVQ, obtaining the index source distribution, updating the discrete memoryless channel (DMC) according to the achieved index distribution, and redesigning the COVQ. This loop stops when the point-to-point distortion is minimized. We consider memoryless Gaussian and Gauss-Markov sources transmitted over binary phase-shift keying modulated additive white Gaussian noise (AWGN) and Rayleigh fading channels. Our scheme, which is shown to have less encoding

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Channel optimized predictive VQ

In this paper combined source-channel coding is considered for the case of predictive vector quantization. A design algorithm for channel optimized predictive vector quantizers is proposed. Under reasonable assumptions, the optimal encoder is presented and a sample iterative design method that simultaneously optimizes the predictor and the codebook is derived. We also demonstrate that this desi...

متن کامل

Iterative Joint Design of Fixed-Rate Source Codes and Multiresolution Channel Codes

We propose an iterative design algorithm for jointly optimizing source and channel codes. The joint design combines channel-optimized vector quantization (COVQ) for the source code with rate-compatible punctured convolutional (RCPC) coding for the channel code. Our objective is to minimize the average end-to-end distortion. For a given channel SNR and transmission rate, our joint source and cha...

متن کامل

Iterative Joint Design of Source Codes and Multiresolution Channel Codes

We propose an iterative design algorithm for jointly optimizing source and channel codes. The joint design combines channel-optimized vector quantization (COVQ) for the source code with rate-compatible punctured convolutional (RCPC) coding for the channel code. Our objective is to minimize the average end-to-end distortion. For a given channel SNR and transmission rate, our joint source and cha...

متن کامل

Joint design of vector quantizers and RCPC channel codes for Rayleigh fading channels

We study the performance of joint source and channel codes designed to minimize end-to-end distortion over a Rayleigh fading channel. We consider two joint code designs. The first joint code uses a sequential design: a standard vector quantizer (VQ) source code is designed for a perfect channel (noiseless and distortionless) and then an RCPC channel code is optimized relative to the VQ and the ...

متن کامل

Design and performance of VQ-based hybrid digital-analog joint source-channel codes

A joint source–channel hybrid digital–analog (HDA) vector quantization (VQ) system is presented. The main advantage of the new VQ-based HDA system is that it achieves excellent rate-distortion-capacity performance at the design signal-to-noise ratio (SNR) while maintaining a “graceful improvement” characteristic at higher SNRs. It is demonstrated that, within the HDA framework, the parameters o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008